

Probabilistic Safety Assessment for internal and external events

Horst Löffler¹, Emmanuel Raimond² ¹GRS Köln, Germany ² IRSN, Fontenay-aux-Roses, France

8th European conference on Euratom research and training in reactor systems

Probabilistic Safety Assessment (PSA) in Nuclear Safety

The design of NPPs is mostly based on **deterministic** safety rules and concepts (e.g. safety margins, design basis accidents), in relation with the defense-in-depth concept.

Nevertheless, vulnerabilities and residual risk exist, which can be determined and quantified by **Probabilistic** Safety Assessment (PSA).

Therefore PSA is an increasingly important supplement to the traditional deterministic approach.

THE 3 LEVELS OF PROBABILISTIC SAFETY ASSESSMENT (PSA)

From WENRA Reference levels

 "PSA shall be used to assess the overall risk from the plant, to demonstrate that a balanced design has been achieved, and to provide confidence that there are no "cliff-edge effects"

 In other words, PSAs should provide a high level of confidence on the NPPs safety. But what is the reality in Europe ?

EC supports research on PSAs ...

EC - FP6 2005-2007 – SARNET – L2 PSA Workpackage

- Exchanges on L2 PSA methodology
- Benchmark on dynamic PSA approach (Hydrogen combustion)
- But need for guidance that can be used by industry
- EC FP7 2008-2011 ASAMPSA2 (22 partners in Europe - Regulator, TSO, R&D, Industry)
 - Guidance on application and development of L2 PSA
 - Extension to Gen IV reactors
 - But there is a need (final workshop, Helsinki, March 9th 2011)
 - for extension to the risks associated to external events
 - for a limited set of requirements to develop high quality L2 PSA.
- EC FP7 20013-2016 ASAMPSA_E (28 partners in Europe)
 - Will be detailed in the following slides

ASAMPSA 2 guidelines

Advanced Safety Assessment Methodologies: Level 2 PSA	An extensive compilation c	of current practices
"NUCLEAR FISSION" Sefety of Existing Nuclear Installations Contract 211594	Advanced Safety Assessment Methodologies: Level 2 PSA	
ASAMPSA2 BEST-PRACTICES GUIDELINES FOR L2PSA DEVELOPMENT AND APPLICATIONS Volume 1 - General	"NUCLEAR FISSION" Sefety of Existing Nuclear Installations Contract 211594	Advenced Safety Assessment Methodologies: Level 2 PSA
Reference ASAMPSA2 Technical report ASAMPSA2 VP2-3-4/03.3/2013-35 Rapport IRDH-PSH/RES/SAG 2013-0177	ASAMPSA2 BEST-PRACTICES GUIDELINES FOR LEVEL 2 PSA DEVELOPMENT AND APPLICATIONS Volume 2 - Best practices for the Gen II PWR, Gen II BWR L2PSAS. Extension to Gen III reactors	"NUCLEAR FISSION" Safety of Existing Nuclear Installations Contract 211594
This document has been established through collaboration between IRSN, GRS, NUBIKI, TRACTEBEL, IBERINCO, UJV, VTT, ERSE, AREVA NP GmbH, AMEC NNC, CEA, FKA, CCA, ENEA, NRG, VGB, PSI, FORTUM, STUK, AREVA NP SAS, SCAIDPOWER	Reference RSAMPSA2 Technical report ASAMPSA2/NP2-3/D3.3/2013-35 Reference IRSN - Rapport PSN-RES/SAG/2013-0177	ASAMPSA2 BEST-PRACTICES GUIDELINES FOR L2 PSA DEVELOPMENT AND APPLICATIONS
Period covered: from: 91/01/2008 to 31/02/2011 Actual submission date: Start date of ASAMPSAI: 01/01/2008 to 31/02/2011 Duratize: 48 months WP No: 28384 Lead topical coordinator : 8: Relations M Mis organisation name : 8504	This document has been established through collaboration between IRSN, GRS, NUBIKI, TRACTEBEL, IBERINCO, UJV, VTT, ERSE, AREVA NP GmbH, AMEC INIC, CEA, FKA, CCA, ENEA, INRG, VGB, PSI, FORTUM, STUK, AREVA NP SAS, SCANDPOWER	Volume 3 - Extension to Gen IV reactors Technical report ASAMPSA2/WP4/03.3/2013-35 Reference IRSN - Report PSN-REJ/SAG2013-0177
Project co-funded by the European commission Within the Severith Framework Programme (2009-2011) Dissemilation Level Yes PU Public Yes RE Restricted to a group specified by the partners of the ASAMPSA2 project. No CO Confidential, only for partners of the ASAMPSA2 project. No	Period covered: from 01/01/2008 to 31/12/2012 Actual sub-rhosion date: Start date of ASAMPSA2: 01/01/2008 Duration: 44 months VM Nc 283 Leed topical coordinator (E. Rahond) Mix organisation name : 0504	This document has been established through collaboration between CEA, IRSN, AREVA-NP, ERSE, DIEA and NRG
•	Project co-funded by the European Commission Within the Serverith Pranework Programme (2008-2011) Dissemination Level PU Public Ves	Ferrior overree: rem 01/01/208 bit Actual summation date: \$11/12/2011 5.5.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
	ne vestrates to a group spectred by the partners of the ASAMPSA2 No project Co Confidential, only for partners of the ASAMPSA2 project No	Project co-funded by the European Commission Within the Seventh Framework Programme (2008-2011) Dtsemination Level PU Public RE Restricted to a group specified by the partners of the ASANPSA2 No

Confidential only for partners of the ASAMPSA2 project

www.asampsa2.eu

ASAMPSA_E - 7th FP - EC call - November 2012

- Research on best-practices for PSA external events and their combinations
- Identification of low probability events can lead to extreme consequences
- > PSA use for decision making in the European context: to take appropriate decisions to reinforce the defence in depth of the plant.
- Nb. of participants : 28 + non EU members in an advisory board (e.g. JANSI (new utility TSO) from Japan, US-NRC, TEPCO)
- > Nb. of deliverables (reports): ~35
- > 2013 2016

Definition used for ASAMPSA_E

- An *extended PSA* (probabilistic safety assessment) applies to a site of one or several Nuclear Power Plant(s) (NPP(s)) and its environment.
- It intends to calculate the risk induced by the main sources of radioactivity (reactor core and spent fuel storages) on the site, taking into account all operating states for each main source and all possible accident initiating events affecting one NPP or the whole site.

ASAMPSA_E

- The ASAMPSA_E project is proposed with the objective to help European stakeholders to develop efficiently such *extended PSA* and verify that all *dominant risks* are identified and managed.
- The scope of the project is **EXTREMELY LARGE** and covers internal and external hazards. The idea is to have specialists from external hazards (earthquake, flooding ...) and PSA working together ...
- Comment : we have to recognize that is very ambitious ... and develop reasonable approach.

ASAMPSA_E

ASAMPSA_E reflects many concerns which came up in the PSA field after the Fukushima Daïchi disaster:

- Identification of the initiating events (single and correlated), to be taken in consideration in an extended PSA,
- How to introduce hazards in Level 1 PSA and all possibilities of events combination?
- General issues regarding extended PSA scope and applications (e.g. risk metrics, evaluation of defense in depth)
- How to introduce hazards in Level 2 PSA and all possibilities of events combinations?
 (e.g. Impact on Human Reliability Assessment, on possible release)

ASAMPSA_E – Achievements so far

ASAMPSA_E started 2013-07-01, so that only few achievements can be reported:

- For the identification of the initiating events a partner outside the nuclear community takes the lead (University of Vienna):
 Particularly it provides knowledge in paleoseismic science (see next slides).
 Other organizations from non nuclear area will be contacted as far as possible.
- In order to identify all potential initiating events, a seed list with approx. 60 items has been drafted (see next slide).
- A report summarizing ASAMPSA2 experiences has been written in order to guide the activities in ASAMPSA_E.

Code	Hazard
Natural Ha	zards
Seisr	notectonic (earthquake)
N1	Vibratory ground motion (including aftershock
	effects)
N2	Vibratory ground motion induced or triggered by
	human activity (e.g., oil, gas or groundwater
	extraction, mine collapse)
N3	Surface faulting (fault capability)
N4	Liquefaction
N5	Dynamic compaction (seismically induced soil
	settlement)
N6	Permanent ground displacement subsequent to
	earthquake
Flood	ding and hydrological hazards
N7	Tsunami (seismic, volcanic, submarine
	landsliding, meteorite impact)
N8	Local extreme rainfall (note links to other
	meteorological phenomena)
N9	Floods resulting from snow melt
N10	Flooding due to off-site precipitation with waters
	routed to the site (including river floods)
N11	High ground water
N12	Flood due to obstruction of a river channel
	(downstream or upstream) by landslides, ice, jams
	caused by logs or debris, or vlocanic activity)
N13	Floods resulting from changes in a river channel
	due to erosion or sedimentation, river diversion
N14	Flood resulting from large waves in inland waters
	induced by volcanoes, landslides, avalanches or
	aircraft crash in water basins

ASAMPSA_E Hazard Lists

3/5 groups

Hazard Hazards Flood and waves caused by failure of water control structures and watercourse containment failure (dam failure, dike failure) due to hydrological or seismic effects Seiche (fluctuation in water level of a lake, sea or any body of water) Bore (tide-induced and induced by water management) Seawater level: high tide, spring tide Seawater level, lake level or river: wind generated waves Seawater level: storm surge Seewater lavel: impact of human made structures such as tide breaks and lietteries Instability of the coastal area due to erosion or sedimentation (sea and river) Underwater debris

Meteorological events: Extreme values of meteorological phenomena

 N25 Precipitation (rain or snow) N26 Extremes of air temperature (high and low) N27 Extremes of ground temperature N28 Extremes of water (sea, lake or river) temperature N29 Humidity (high and low), extreme atmoshperic moisture N30 Air pressure N31 Extreme drought leading to low river or lake water levels N32 Low ground water N33 Snow pack N34 Icing (including for power lines) (**) N35 White frost N36 Hail N37 Permafrost N38 Recurring soil frost N39 Snow melt (see Flooding) N40 Low seawater level 		
 N26 Extremes of air temperature (high and low) N27 Extremes of ground temperature N28 Extremes of water (sea, lake or river) temperature N29 Humidity (high and low), extreme atmoshperic moisture N30 Air pressure N31 Extreme drought leading to low river or lake water levels N32 Low ground water N33 Snow pack N34 Icing (including for power lines) (**) N35 White frost N36 Hail N37 Permafrost N38 Recurring soil frost N39 Snow melt (see Flooding) N40 Low seawater level 	N25	Precipitation (rain or snow)
Iow) N27 Extremes of ground temperature N28 Extremes of water (sea, lake or river) temperature N29 Humidity (high and low), extreme atmoshperic moisture N30 Air pressure N31 Extreme drought leading to low river or lake water levels N32 Low ground water N33 Snow pack N34 Icing (including for power lines) (**) N35 White frost N36 Hail N37 Permafrost N38 Recurring soil frost N39 Snow melt (see Flooding) N40 Low seawater level	N26	Extremes of air temperature (high and
N27 Extremes of ground temperature N28 Extremes of water (sea, lake or river) temperature N29 Humidity (high and low), extreme atmoshperic moisture N30 Air pressure N31 Extreme drought leading to low river or lake water levels N32 Low ground water N33 Snow pack N34 Icing (including for power lines) (**) N35 White frost N36 Hail N37 Permafrost N38 Recurring soil frost N39 Snow melt (see Flooding) N40 Low seawater level		low)
N28 Extremes of water (sea, lake or river) temperature N29 Humidity (high and low), extreme atmoshperic moisture N30 Air pressure N31 Extreme drought leading to low river or lake water levels N32 Low ground water N33 Snow pack N34 Icing (including for power lines) (**) N35 White frost N36 Hail N37 Permafrost N38 Recurring soil frost N39 Snow melt (see Flooding) N40 Low seawater level	N27	Extremes of ground temperature
temperature N29 Humidity (high and low), extreme atmoshperic moisture N30 Air pressure N31 Extreme drought leading to low river or lake water levels N32 Low ground water N33 Snow pack N34 Icing (including for power lines) (**) N35 White frost N36 Hail N37 Permafrost N38 Recurring soil frost N39 Snow melt (see Flooding) N40 Low seawater level	N28	Extremes of water (sea, lake or river)
 N29 Humidity (high and low), extreme atmoshperic moisture N30 Air pressure N31 Extreme drought leading to low river or lake water levels N32 Low ground water N33 Snow pack N34 Icing (including for power lines) (**) N35 White frost N36 Hail N37 Permafrost N38 Recurring soil frost N39 Snow melt (see Flooding) N40 Low seawater level 		temperature
atmoshperic moisture N30 Air pressure N31 Extreme drought leading to low river or lake water levels N32 Low ground water N33 Snow pack N34 Icing (including for power lines) (**) N35 White frost N36 Hail N37 Permafrost N38 Recurring soil frost N39 Snow melt (see Flooding) N40 Low seawater level	N29	Humidity (high and low), extreme
N30 Air pressure N31 Extreme drought leading to low river or lake water levels N32 Low ground water N33 Snow pack N34 Icing (including for power lines) (**) N35 White frost N36 Hail N37 Permafrost N38 Recurring soil frost N39 Snow melt (see Flooding) N40 Low seawater level		atmoshperic moisture
N31 Extreme drought leading to low river or lake water levels N32 Low ground water N33 Snow pack N34 Icing (including for power lines) (**) N35 White frost N36 Hail N37 Permafrost N38 Recurring soil frost N39 Snow melt (see Flooding) N40 Low seawater level	N30	Air pressure
or lake water levels N32 Low ground water N33 Snow pack N34 Icing (including for power lines) (**) N35 White frost N36 Hail N37 Permafrost N38 Recurring soil frost N39 Snow melt (see Flooding) N40 Low seawater level	N31	Extreme drought leading to low river
N32Low ground waterN33Snow packN34Icing (including for power lines) (**)N35White frostN36HailN37PermafrostN38Recurring soil frostN39Snow melt (see Flooding)N40Low seawater level		or lake water levels
N33 Snow pack N34 Icing (including for power lines) (**) N35 White frost N36 Hail N37 Permafrost N38 Recurring soil frost N39 Snow melt (see Flooding) N40 Low seawater level	N32	Low ground water
N34Icing (including for power lines) (**)N35White frostN36HailN37PermafrostN38Recurring soil frostN39Snow melt (see Flooding)N40Low seawater level	N33	Snow pack
N35 White frost N36 Hail N37 Permafrost N38 Recurring soil frost N39 Snow melt (see Flooding) N40 Low seawater level	N34	Icing (including for power lines) (**)
N35 White frost N36 Hail N37 Permafrost N38 Recurring soil frost N39 Snow melt (see Flooding) N40 Low seawater level		
N36 Hail N37 Permafrost N38 Recurring soil frost N39 Snow melt (see Flooding) N40 Low seawater level	N35	White frost
N37PermafrostN38Recurring soil frostN39Snow melt (see Flooding)N40Low seawater level	N36	Hail
N38 Recurring soil frost N39 Snow melt (see Flooding) N40 Low seawater level	N37	Permafrost
N39 Snow melt (see Flooding) N40 Low seawater level	N38	Recurring soil frost
N40 Low seawater level	N39	Snow melt (see Flooding)
	N40	Low seawater level

Meteorological events: Rare meteorological phenomena		
N40	Lightning including electromagnetic interference	
N41	High wind, storm (including Hurricane, Tropical Cyclone, Typhoon)	
N42	Tornado	
N43	Blizzard / Snowstorm	
N44	Wind blown debris (external missiles)	
N45	Sandstorm, dust storm	
N46	Saltspray / Saltstorm	
N47	Waterspouts	
N48	Snow avalanche	
N49	Surface ice (rivers, lakes or sea)	
N50	Ice flows	
N51	Frazil	
N52	Mist, fog and freezing fog	
N53	Solar flares, solar storms, electromagnetifc interference	

ASAMPSA_E – Hazard Lists

2/5 groups

-		
Biological / Infestation		
N54	Marine growth (seaweed, altgae), biological fouling	
N55	Fish	
N56	Jellyfish	
N57	Crustaceans, molluscs (shrimps, clams, mussels, shells)	
N58	Birds	
N59	Airborne swarms (insects) or leaves	
N60	Infestation by rodents and other animals	

Remarks on Seismic Hazard (1)

The earthquake record in the Vienna Basin

- First record 1468 AD
- Data not even complete for the 20th century (see world wars I & II impact)
- Many proven active faults did not generate earthquakes in historical times
 - but in the near future ?

Vilnius, 14-16 October 2013

Remarks on Seismic Hazard (2)

- Seismic hazard assessment for very low probabilities ("once in 10.000 years") is seriously challenged by limited and incomplete earthquake data.
- Seismic Hazard assessment needs to extrapolate 10 to 100 times over data coverage:

Historical records:

- Paleoseismological approach will support the assessment
- Observations in the soil provide information on:
 - faults which did not generate earthquakes in historical records
 - potential magnitude of earthquakes due to that fault

ASAMPSA_E – Example of challenges

- The seismic example (which even belongs to the more developed issues) shows the extreme difficulties in assessing external hazards.
- The number of potential hazards (60+) shows the size of the task
- The more impact (internal or external) is on a NPP, the more it will deviate from its normal status
 - Conditions of structures / components which may influence / prevent / mitigate an accident are difficult to evaluate
 - Human actions under extreme conditions difficult to predict
- Only little experience with extended PSA, in particular in PSA L2

ASAMPSA_E – Roadmap

- <u>Early 2014</u>: PSA end-user's opinions will be collected by a questionnaire and an open workshop (March 2014?). Contributions are expected from 50+ stakeholders
- <u>Mid-2014</u>: structure, table of contents and main contributors will be defined for the key reports
- <u>End-2015</u>: final draft of deliverables submitted to end-user's group
- <u>Mid-2016</u>: project ends.